Properties

Label 244608bc
Number of curves $1$
Conductor $244608$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 244608bc1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 244608bc do not have complex multiplication.

Modular form 244608.2.a.bc

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} - q^{11} + q^{13} + q^{15} - q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 244608bc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244608.bc1 244608bc1 \([0, -1, 0, -41561, -3247383]\) \(-2825582965664/39\) \(-109584384\) \([]\) \(301056\) \(1.0980\) \(\Gamma_0(N)\)-optimal