Properties

Label 244608.cw
Number of curves $1$
Conductor $244608$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cw1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 244608.cw1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 244608.cw do not have complex multiplication.

Modular form 244608.2.a.cw

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{5} + q^{9} + 3 q^{11} + q^{13} - 3 q^{15} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 244608.cw

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244608.cw1 244608cw1 \([0, -1, 0, 13606, -512658]\) \(377475616/369603\) \(-272728031232384\) \([]\) \(940800\) \(1.4570\) \(\Gamma_0(N)\)-optimal