Properties

Label 244608.fj
Number of curves $2$
Conductor $244608$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 244608.fj have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 244608.fj do not have complex multiplication.

Modular form 244608.2.a.fj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} + q^{9} - q^{13} + 2 q^{15} + 2 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 244608.fj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244608.fj1 244608fj2 \([0, 1, 0, -5357, 47403]\) \(8821888/4563\) \(8795461828608\) \([2]\) \(442368\) \(1.1758\)  
244608.fj2 244608fj1 \([0, 1, 0, 1258, 6390]\) \(14609056/9477\) \(-142714825344\) \([2]\) \(221184\) \(0.82923\) \(\Gamma_0(N)\)-optimal