Properties

Label 244608.be
Number of curves $1$
Conductor $244608$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("be1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 244608.be1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 244608.be do not have complex multiplication.

Modular form 244608.2.a.be

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} + q^{11} + q^{13} + q^{15} + q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 244608.be

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244608.be1 244608be1 \([0, -1, 0, -509126, 139995234]\) \(-2825582965664/39\) \(-201445206144\) \([]\) \(1053696\) \(1.7244\) \(\Gamma_0(N)\)-optimal