Properties

Label 244398g
Number of curves $4$
Conductor $244398$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 244398g have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 244398g do not have complex multiplication.

Modular form 244398.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + 2 q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - 2 q^{10} - q^{11} - q^{12} + 2 q^{13} + q^{14} - 2 q^{15} + q^{16} + 6 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 244398g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244398.g4 244398g1 \([1, 1, 0, 1841, 19285]\) \(4657463/3696\) \(-547140645744\) \([2]\) \(394240\) \(0.94026\) \(\Gamma_0(N)\)-optimal
244398.g3 244398g2 \([1, 1, 0, -8739, 156825]\) \(498677257/213444\) \(31597372291716\) \([2, 2]\) \(788480\) \(1.2868\)  
244398.g1 244398g3 \([1, 1, 0, -119829, 15909387]\) \(1285429208617/614922\) \(91030524935658\) \([2]\) \(1576960\) \(1.6334\)  
244398.g2 244398g4 \([1, 1, 0, -66929, -6581577]\) \(223980311017/4278582\) \(633383690029398\) \([2]\) \(1576960\) \(1.6334\)