Properties

Label 243360ff
Number of curves $4$
Conductor $243360$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ff1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 243360ff have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 243360ff do not have complex multiplication.

Modular form 243360.2.a.ff

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 4 q^{7} - 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 243360ff

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
243360.ff3 243360ff1 \([0, 0, 0, -24747177, -26813576504]\) \(7442744143086784/2927948765625\) \(659372892900519681000000\) \([2, 2]\) \(33030144\) \(3.2690\) \(\Gamma_0(N)\)-optimal
243360.ff2 243360ff2 \([0, 0, 0, -178748427, 900920753746]\) \(350584567631475848/8259273550125\) \(14879880844746068234304000\) \([2]\) \(66060288\) \(3.6156\)  
243360.ff4 243360ff3 \([0, 0, 0, 79357668, -193547896256]\) \(3834800837445824/3342041015625\) \(-48168083344329000000000000\) \([2]\) \(66060288\) \(3.6156\)  
243360.ff1 243360ff4 \([0, 0, 0, -346058427, -2477068906754]\) \(2543984126301795848/909361981125\) \(1638303640357987077696000\) \([2]\) \(66060288\) \(3.6156\)