Show commands: SageMath
Rank
The elliptic curves in class 24200e have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 24200e do not have complex multiplication.Modular form 24200.2.a.e
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 24200e
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 24200.p1 | 24200e1 | \([0, 0, 0, -114950, 14474625]\) | \(379275264/15125\) | \(6698715031250000\) | \([2]\) | \(138240\) | \(1.8032\) | \(\Gamma_0(N)\)-optimal |
| 24200.p2 | 24200e2 | \([0, 0, 0, 51425, 52907250]\) | \(2122416/171875\) | \(-1217948187500000000\) | \([2]\) | \(276480\) | \(2.1498\) |