Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 240.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
240.a1 | 240c4 | \([0, -1, 0, -216, 1296]\) | \(546718898/405\) | \(829440\) | \([2]\) | \(64\) | \(0.069403\) | |
240.a2 | 240c3 | \([0, -1, 0, -136, -560]\) | \(136835858/1875\) | \(3840000\) | \([2]\) | \(64\) | \(0.069403\) | |
240.a3 | 240c2 | \([0, -1, 0, -16, 16]\) | \(470596/225\) | \(230400\) | \([2, 2]\) | \(32\) | \(-0.27717\) | |
240.a4 | 240c1 | \([0, -1, 0, 4, 0]\) | \(21296/15\) | \(-3840\) | \([2]\) | \(16\) | \(-0.62374\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 240.a have rank \(1\).
Complex multiplication
The elliptic curves in class 240.a do not have complex multiplication.Modular form 240.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.