Properties

Label 239904.w
Number of curves $4$
Conductor $239904$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("w1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 239904.w have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 239904.w do not have complex multiplication.

Modular form 239904.2.a.w

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - 4 q^{11} - 2 q^{13} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 239904.w

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
239904.w1 239904w2 \([0, 0, 0, -233575356, 1373990453696]\) \(4011705594213827392/52680152007\) \(18506433705290771853312\) \([2]\) \(28311552\) \(3.4168\)  
239904.w2 239904w4 \([0, 0, 0, -55841331, -138671916586]\) \(438536015880092936/64602489661101\) \(2836840931929721527921152\) \([2]\) \(28311552\) \(3.4168\)  
239904.w3 239904w1 \([0, 0, 0, -15000321, 20224116920]\) \(68003243639904448/7163272192041\) \(39319428453025513149504\) \([2, 2]\) \(14155776\) \(3.0703\) \(\Gamma_0(N)\)-optimal
239904.w4 239904w3 \([0, 0, 0, 19410909, 99473179610]\) \(18419405270942584/108003564029403\) \(-4742679931380236930950656\) \([2]\) \(28311552\) \(3.4168\)