Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-100580x-352249\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-100580xz^2-352249z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1609275x-24153194\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{6}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-21, 1333)$ | $0.63099287712740211283647087314$ | $\infty$ |
| $(-63, 2425)$ | $0$ | $6$ |
Integral points
\( \left(-315, 157\right) \), \( \left(-291, 2197\right) \), \( \left(-291, -1907\right) \), \( \left(-203, 3517\right) \), \( \left(-203, -3315\right) \), \( \left(-63, 2425\right) \), \( \left(-63, -2363\right) \), \( \left(-21, 1333\right) \), \( \left(-21, -1313\right) \), \( \left(357, 2845\right) \), \( \left(357, -3203\right) \), \( \left(469, 7213\right) \), \( \left(469, -7683\right) \), \( \left(735, 17587\right) \), \( \left(735, -18323\right) \), \( \left(1449, 53077\right) \), \( \left(1449, -54527\right) \), \( \left(1989, 86557\right) \), \( \left(1989, -88547\right) \), \( \left(7917, 699877\right) \), \( \left(7917, -707795\right) \)
Invariants
| Conductor: | $N$ | = | \( 2394 \) | = | $2 \cdot 3^{2} \cdot 7 \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $65057936369061888$ | = | $2^{12} \cdot 3^{9} \cdot 7^{6} \cdot 19^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{154357248921765625}{89242711068672} \) | = | $2^{-12} \cdot 3^{-3} \cdot 5^{6} \cdot 7^{-6} \cdot 19^{-3} \cdot 43^{3} \cdot 499^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.9156596457199593513994772828$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.3663535013859045057018546643$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1447961981888821$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.933861465628828$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.63099287712740211283647087314$ |
|
| Real period: | $\Omega$ | ≈ | $0.29329737264602625256057944837$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 864 $ = $ ( 2^{2} \cdot 3 )\cdot2^{2}\cdot( 2 \cdot 3 )\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $6$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.4416452724757739044452350068 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.441645272 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.293297 \cdot 0.630993 \cdot 864}{6^2} \\ & \approx 4.441645272\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 27648 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
| $3$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
| $7$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
| $19$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3Cs.1.1 | 3.24.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \), index $864$, genus $21$, and generators
$\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 790 & 3 \\ 2505 & 4720 \end{array}\right),\left(\begin{array}{rr} 4786 & 4779 \\ 153 & 2816 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 4753 & 36 \\ 4752 & 37 \end{array}\right),\left(\begin{array}{rr} 697 & 36 \\ 426 & 1285 \end{array}\right),\left(\begin{array}{rr} 19 & 24 \\ 1440 & 1819 \end{array}\right),\left(\begin{array}{rr} 1225 & 402 \\ 1458 & 2935 \end{array}\right)$.
The torsion field $K:=\Q(E[4788])$ is a degree-$107226685440$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4788\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 171 = 3^{2} \cdot 19 \) |
| $3$ | additive | $2$ | \( 1 \) |
| $7$ | split multiplicative | $8$ | \( 342 = 2 \cdot 3^{2} \cdot 19 \) |
| $19$ | split multiplicative | $20$ | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 2394.j
consists of 6 curves linked by isogenies of
degrees dividing 18.
Twists
The minimal quadratic twist of this elliptic curve is 798.d4, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{6}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{57}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $4$ | 4.0.44688.1 | \(\Z/12\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{-19})\) | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.4.26888414643216.6 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.0.6488309350656.18 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.0.17973156096.24 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
| $9$ | 9.3.564762862968547416768.2 | \(\Z/18\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $16$ | deg 16 | \(\Z/6\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/6\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.0.126029205815221227930592527101952.1 | \(\Z/3\Z \oplus \Z/18\Z\) | not in database |
| $18$ | 18.0.956871274165290801273867115679897662697472.6 | \(\Z/3\Z \oplus \Z/18\Z\) | not in database |
| $18$ | 18.0.170302529020140867707189728352208348658803.3 | \(\Z/3\Z \oplus \Z/18\Z\) | not in database |
| $18$ | 18.6.6563180069499729605937454546448418068441960448.5 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | ss | split | ord | ord | ss | split | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | - | 1,1 | 2 | 1 | 1 | 1,1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | - | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.