Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-36467x-2653485\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-36467xz^2-2653485z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-583467x-170406490\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-105, 150)$ | $0.32622047288723928702930421312$ | $\infty$ |
| $(-469/4, 465/8)$ | $0$ | $2$ |
Integral points
\( \left(-109, 186\right) \), \( \left(-109, -78\right) \), \( \left(-105, 150\right) \), \( \left(-105, -46\right) \), \( \left(225, 590\right) \), \( \left(225, -816\right) \), \( \left(287, 3090\right) \), \( \left(287, -3378\right) \), \( \left(483, 9362\right) \), \( \left(483, -9846\right) \), \( \left(3521, 206832\right) \), \( \left(3521, -210354\right) \)
Invariants
| Conductor: | $N$ | = | \( 23562 \) | = | $2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $40981924190592$ | = | $2^{7} \cdot 3^{3} \cdot 7^{8} \cdot 11^{2} \cdot 17 $ |
|
| j-invariant: | $j$ | = | \( \frac{198631853028508563}{1517849044096} \) | = | $2^{-7} \cdot 3^{3} \cdot 7^{-8} \cdot 11^{-2} \cdot 17^{-1} \cdot 43^{3} \cdot 4523^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4413992910084647766883251852$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1667462188414373538395138760$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.953680301100045$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.283738301950632$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.32622047288723928702930421312$ |
|
| Real period: | $\Omega$ | ≈ | $0.34564124932004662070148005019$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 224 $ = $ 7\cdot2\cdot2^{3}\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.3142941009412198637851644420 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.314294101 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.345641 \cdot 0.326220 \cdot 224}{2^2} \\ & \approx 6.314294101\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 129024 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
| $3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
| $7$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
| $11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $17$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4488 = 2^{3} \cdot 3 \cdot 11 \cdot 17 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 409 & 4 \\ 818 & 9 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1684 & 2809 \\ 561 & 3928 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 2243 & 0 \end{array}\right),\left(\begin{array}{rr} 2996 & 1 \\ 1495 & 0 \end{array}\right),\left(\begin{array}{rr} 2114 & 1 \\ 3431 & 0 \end{array}\right),\left(\begin{array}{rr} 4485 & 4 \\ 4484 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[4488])$ is a degree-$6353112268800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4488\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 51 = 3 \cdot 17 \) |
| $3$ | additive | $6$ | \( 2618 = 2 \cdot 7 \cdot 11 \cdot 17 \) |
| $7$ | split multiplicative | $8$ | \( 1683 = 3^{2} \cdot 11 \cdot 17 \) |
| $11$ | split multiplicative | $12$ | \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \) |
| $17$ | split multiplicative | $18$ | \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 23562y
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 23562c2, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{102}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.0.1777248.1 | \(\Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.58421658948009984.147 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | ord | split | split | ss | split | ord | ord | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 9 | - | 1 | 2 | 2 | 1,1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | 1 | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.