Properties

Label 23520.h
Number of curves 44
Conductor 2352023520
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 23520.h have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
551+T1 + T
7711
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 1+11T2 1 + 11 T^{2} 1.11.a
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1717 12T+17T2 1 - 2 T + 17 T^{2} 1.17.ac
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 18T+23T2 1 - 8 T + 23 T^{2} 1.23.ai
2929 1+2T+29T2 1 + 2 T + 29 T^{2} 1.29.c
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 23520.h do not have complex multiplication.

Modular form 23520.2.a.h

Copy content sage:E.q_eigenform(10)
 
qq3q5+q92q13+q15+2q174q19+O(q20)q - q^{3} - q^{5} + q^{9} - 2 q^{13} + q^{15} + 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 23520.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23520.h1 23520bc4 [0,1,0,691896,221748696][0, -1, 0, -691896, 221748696] 608119035935048/826875608119035935048/826875 4980788064000049807880640000 [2][2] 147456147456 1.90251.9025  
23520.h2 23520bc3 [0,1,0,109776,9315900][0, -1, 0, -109776, -9315900] 2428799546888/7782481352428799546888/778248135 4687877879532288046878778795322880 [2][2] 147456147456 1.90251.9025  
23520.h3 23520bc1 [0,1,0,43626,3411360][0, -1, 0, -43626, 3411360] 1219555693504/437582251219555693504/43758225 329479130433600329479130433600 [2,2][2, 2] 7372873728 1.55591.5559 Γ0(N)\Gamma_0(N)-optimal
23520.h4 23520bc2 [0,1,0,16399,12018945][0, -1, 0, 16399, 12018945] 1012048064/1302030451012048064/130203045 62743584936775680-62743584936775680 [2][2] 147456147456 1.90251.9025