sage:E = EllipticCurve("h1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 23520.h have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
5 | 1+T |
7 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1+11T2 |
1.11.a
|
13 |
1+2T+13T2 |
1.13.c
|
17 |
1−2T+17T2 |
1.17.ac
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1−8T+23T2 |
1.23.ai
|
29 |
1+2T+29T2 |
1.29.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 23520.h do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.
Elliptic curves in class 23520.h
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
23520.h1 |
23520bc4 |
[0,−1,0,−691896,221748696] |
608119035935048/826875 |
49807880640000 |
[2] |
147456 |
1.9025
|
|
23520.h2 |
23520bc3 |
[0,−1,0,−109776,−9315900] |
2428799546888/778248135 |
46878778795322880 |
[2] |
147456 |
1.9025
|
|
23520.h3 |
23520bc1 |
[0,−1,0,−43626,3411360] |
1219555693504/43758225 |
329479130433600 |
[2,2] |
73728 |
1.5559
|
Γ0(N)-optimal |
23520.h4 |
23520bc2 |
[0,−1,0,16399,12018945] |
1012048064/130203045 |
−62743584936775680 |
[2] |
147456 |
1.9025
|
|