y 2 = x 3 − x 2 − 257266 x − 50128784 y^2=x^3-x^2-257266x-50128784 y 2 = x 3 − x 2 − 2 5 7 2 6 6 x − 5 0 1 2 8 7 8 4
(homogenize , simplify )
y 2 z = x 3 − x 2 z − 257266 x z 2 − 50128784 z 3 y^2z=x^3-x^2z-257266xz^2-50128784z^3 y 2 z = x 3 − x 2 z − 2 5 7 2 6 6 x z 2 − 5 0 1 2 8 7 8 4 z 3
(dehomogenize , simplify )
y 2 = x 3 − 20838573 x − 36606399228 y^2=x^3-20838573x-36606399228 y 2 = x 3 − 2 0 8 3 8 5 7 3 x − 3 6 6 0 6 3 9 9 2 2 8
(homogenize , minimize )
sage: E = EllipticCurve([0, -1, 0, -257266, -50128784])
gp: E = ellinit([0, -1, 0, -257266, -50128784])
magma: E := EllipticCurve([0, -1, 0, -257266, -50128784]);
oscar: E = elliptic_curve([0, -1, 0, -257266, -50128784])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 82680 / 121 , 12811736 / 1331 ) (82680/121, 12811736/1331) ( 8 2 6 8 0 / 1 2 1 , 1 2 8 1 1 7 3 6 / 1 3 3 1 ) 9.3865635934380612357315063849 9.3865635934380612357315063849 9 . 3 8 6 5 6 3 5 9 3 4 3 8 0 6 1 2 3 5 7 3 1 5 0 6 3 8 4 9 ∞ \infty ∞
( − 289 , 0 ) (-289, 0) ( − 2 8 9 , 0 ) 0 0 0 2 2 2
( 586 , 0 ) (586, 0) ( 5 8 6 , 0 ) 0 0 0 2 2 2
( − 296 , 0 ) \left(-296, 0\right) ( − 2 9 6 , 0 ) , ( − 289 , 0 ) \left(-289, 0\right) ( − 2 8 9 , 0 ) , ( 586 , 0 ) \left(586, 0\right) ( 5 8 6 , 0 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
23520 23520 2 3 5 2 0 = 2 5 ⋅ 3 ⋅ 5 ⋅ 7 2 2^{5} \cdot 3 \cdot 5 \cdot 7^{2} 2 5 ⋅ 3 ⋅ 5 ⋅ 7 2
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
466948881000000 466948881000000 4 6 6 9 4 8 8 8 1 0 0 0 0 0 0 = 2 6 ⋅ 3 4 ⋅ 5 6 ⋅ 7 8 2^{6} \cdot 3^{4} \cdot 5^{6} \cdot 7^{8} 2 6 ⋅ 3 4 ⋅ 5 6 ⋅ 7 8
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
250094631024064 62015625 \frac{250094631024064}{62015625} 6 2 0 1 5 6 2 5 2 5 0 0 9 4 6 3 1 0 2 4 0 6 4 = 2 6 ⋅ 3 − 4 ⋅ 5 − 6 ⋅ 7 − 2 ⋅ 1 9 3 ⋅ 82 9 3 2^{6} \cdot 3^{-4} \cdot 5^{-6} \cdot 7^{-2} \cdot 19^{3} \cdot 829^{3} 2 6 ⋅ 3 − 4 ⋅ 5 − 6 ⋅ 7 − 2 ⋅ 1 9 3 ⋅ 8 2 9 3
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 1.8023443355282174767835293191 1.8023443355282174767835293191 1 . 8 0 2 3 4 4 3 3 5 5 2 8 2 1 7 4 7 6 7 8 3 5 2 9 3 1 9 1
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.48281567072058816952223688665 0.48281567072058816952223688665 0 . 4 8 2 8 1 5 6 7 0 7 2 0 5 8 8 1 6 9 5 2 2 2 3 6 8 8 6 6 5
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.0061975036142359 1.0061975036142359 1 . 0 0 6 1 9 7 5 0 3 6 1 4 2 3 5 9
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.866791180525567 4.866791180525567 4 . 8 6 6 7 9 1 1 8 0 5 2 5 5 6 7
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 9.3865635934380612357315063849 9.3865635934380612357315063849 9 . 3 8 6 5 6 3 5 9 3 4 3 8 0 6 1 2 3 5 7 3 1 5 0 6 3 8 4 9
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 0.21198751209876912305070819816 0.21198751209876912305070819816 0 . 2 1 1 9 8 7 5 1 2 0 9 8 7 6 9 1 2 3 0 5 0 7 0 8 1 9 8 1 6
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 32 32 3 2
= 2 ⋅ 2 ⋅ 2 ⋅ 2 2 2\cdot2\cdot2\cdot2^{2} 2 ⋅ 2 ⋅ 2 ⋅ 2 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 4 4 4
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 3.9796685266596335640998982568 3.9796685266596335640998982568 3 . 9 7 9 6 6 8 5 2 6 6 5 9 6 3 3 5 6 4 0 9 9 8 9 8 2 5 6 8
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
3.979668527 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.211988 ⋅ 9.386564 ⋅ 32 4 2 ≈ 3.979668527 \begin{aligned} 3.979668527 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.211988 \cdot 9.386564 \cdot 32}{4^2} \\ & \approx 3.979668527\end{aligned} 3 . 9 7 9 6 6 8 5 2 7 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 4 2 1 ⋅ 0 . 2 1 1 9 8 8 ⋅ 9 . 3 8 6 5 6 4 ⋅ 3 2 ≈ 3 . 9 7 9 6 6 8 5 2 7
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, -1, 0, -257266, -50128784]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, -1, 0, -257266, -50128784]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
23520.2.a.e
q − q 3 − q 5 + q 9 − 4 q 11 + 2 q 13 + q 15 + 2 q 17 + 8 q 19 + O ( q 20 ) q - q^{3} - q^{5} + q^{9} - 4 q^{11} + 2 q^{13} + q^{15} + 2 q^{17} + 8 q^{19} + O(q^{20}) q − q 3 − q 5 + q 9 − 4 q 1 1 + 2 q 1 3 + q 1 5 + 2 q 1 7 + 8 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[1, 0, 4, 1], [141, 2, 0, 1], [1, 4, 0, 1], [277, 4, 276, 5], [71, 2, 142, 5], [57, 4, 114, 9], [39, 278, 0, 279]]
GL(2,Integers(280)).subgroup(gens)
magma: Gens := [[1, 0, 4, 1], [141, 2, 0, 1], [1, 4, 0, 1], [277, 4, 276, 5], [71, 2, 142, 5], [57, 4, 114, 9], [39, 278, 0, 279]];
sub<GL(2,Integers(280))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 280 = 2 3 ⋅ 5 ⋅ 7 280 = 2^{3} \cdot 5 \cdot 7 2 8 0 = 2 3 ⋅ 5 ⋅ 7 , index 48 48 4 8 , genus 0 0 0 , and generators
( 1 0 4 1 ) , ( 141 2 0 1 ) , ( 1 4 0 1 ) , ( 277 4 276 5 ) , ( 71 2 142 5 ) , ( 57 4 114 9 ) , ( 39 278 0 279 ) \left(\begin{array}{rr}
1 & 0 \\
4 & 1
\end{array}\right),\left(\begin{array}{rr}
141 & 2 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
277 & 4 \\
276 & 5
\end{array}\right),\left(\begin{array}{rr}
71 & 2 \\
142 & 5
\end{array}\right),\left(\begin{array}{rr}
57 & 4 \\
114 & 9
\end{array}\right),\left(\begin{array}{rr}
39 & 278 \\
0 & 279
\end{array}\right) ( 1 4 0 1 ) , ( 1 4 1 0 2 1 ) , ( 1 0 4 1 ) , ( 2 7 7 2 7 6 4 5 ) , ( 7 1 1 4 2 2 5 ) , ( 5 7 1 1 4 4 9 ) , ( 3 9 0 2 7 8 2 7 9 ) .
The torsion field K : = Q ( E [ 280 ] ) K:=\Q(E[280]) K : = Q ( E [ 2 8 0 ] ) is a degree-30965760 30965760 3 0 9 6 5 7 6 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 280 Z ) \GL_2(\Z/280\Z) GL 2 ( Z / 2 8 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
additive
2 2 2
49 = 7 2 49 = 7^{2} 4 9 = 7 2
3 3 3
nonsplit multiplicative
4 4 4
1568 = 2 5 ⋅ 7 2 1568 = 2^{5} \cdot 7^{2} 1 5 6 8 = 2 5 ⋅ 7 2
5 5 5
nonsplit multiplicative
6 6 6
4704 = 2 5 ⋅ 3 ⋅ 7 2 4704 = 2^{5} \cdot 3 \cdot 7^{2} 4 7 0 4 = 2 5 ⋅ 3 ⋅ 7 2
7 7 7
additive
32 32 3 2
480 = 2 5 ⋅ 3 ⋅ 5 480 = 2^{5} \cdot 3 \cdot 5 4 8 0 = 2 5 ⋅ 3 ⋅ 5
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 23520.e
consists of 4 curves linked by isogenies of
degrees dividing 4.
The minimal quadratic twist of this elliptic curve is
3360.g3 , its twist by 28 28 2 8 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z ⊕ Z / 2 Z \cong \Z/{2}\Z \oplus \Z/{2}\Z ≅ Z / 2 Z ⊕ Z / 2 Z
are as follows:
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
11
17
19
23
29
37
43
47
53
59
61
71
73
79
83
89
97