Properties

Label 23520.c
Number of curves 11
Conductor 2352023520
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 23520.c1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
551+T1 + T
7711
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 1+5T+11T2 1 + 5 T + 11 T^{2} 1.11.f
1313 1T+13T2 1 - T + 13 T^{2} 1.13.ab
1717 1+8T+17T2 1 + 8 T + 17 T^{2} 1.17.i
1919 15T+19T2 1 - 5 T + 19 T^{2} 1.19.af
2323 13T+23T2 1 - 3 T + 23 T^{2} 1.23.ad
2929 14T+29T2 1 - 4 T + 29 T^{2} 1.29.ae
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 23520.c do not have complex multiplication.

Modular form 23520.2.a.c

Copy content sage:E.q_eigenform(10)
 
qq3q5+q95q11+q13+q158q17+5q19+O(q20)q - q^{3} - q^{5} + q^{9} - 5 q^{11} + q^{13} + q^{15} - 8 q^{17} + 5 q^{19} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 23520.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23520.c1 23520a1 [0,1,0,16,1784][0, -1, 0, -16, -1784] 392/1125-392/1125 1382976000-1382976000 [][] 1267212672 0.432910.43291 Γ0(N)\Gamma_0(N)-optimal