Properties

Label 234650.t
Number of curves $1$
Conductor $234650$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 234650.t1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1 + T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 234650.t do not have complex multiplication.

Modular form 234650.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - 2 q^{7} - q^{8} - 2 q^{9} + 3 q^{11} - q^{12} - q^{13} + 2 q^{14} + q^{16} + 6 q^{17} + 2 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 234650.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
234650.t1 234650t1 \([1, 1, 0, -931863025, -10949433320875]\) \(-934165699635529/21632\) \(-2072300395136738000000\) \([]\) \(61286400\) \(3.6129\) \(\Gamma_0(N)\)-optimal