Properties

Label 234135.w
Number of curves $1$
Conductor $234135$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("w1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 234135.w1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 234135.w do not have complex multiplication.

Modular form 234135.2.a.w

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{5} + 4 q^{13} + 4 q^{16} - 3 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 234135.w

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
234135.w1 234135w1 \([0, 0, 1, -1782, 9875]\) \(262766592/134375\) \(320033278125\) \([]\) \(172800\) \(0.89994\) \(\Gamma_0(N)\)-optimal