Show commands: SageMath
Rank
The elliptic curves in class 23400bf have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 23400bf do not have complex multiplication.Modular form 23400.2.a.bf
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 23400bf
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 23400.v4 | 23400bf1 | \([0, 0, 0, 37950, -189875]\) | \(33165879296/19278675\) | \(-3513538518750000\) | \([2]\) | \(73728\) | \(1.6724\) | \(\Gamma_0(N)\)-optimal |
| 23400.v3 | 23400bf2 | \([0, 0, 0, -152175, -1520750]\) | \(133649126224/77000625\) | \(224533822500000000\) | \([2, 2]\) | \(147456\) | \(2.0190\) | |
| 23400.v2 | 23400bf3 | \([0, 0, 0, -1614675, 786766750]\) | \(39914580075556/172718325\) | \(2014586542800000000\) | \([2]\) | \(294912\) | \(2.3655\) | |
| 23400.v1 | 23400bf4 | \([0, 0, 0, -1731675, -874984250]\) | \(49235161015876/137109375\) | \(1599243750000000000\) | \([2]\) | \(294912\) | \(2.3655\) |