Properties

Label 23322.c
Number of curves $4$
Conductor $23322$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 23322.c have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(13\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 23322.c do not have complex multiplication.

Modular form 23322.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - 2 q^{5} + q^{6} - q^{8} + q^{9} + 2 q^{10} - q^{12} + 2 q^{15} + q^{16} + 2 q^{17} - q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 23322.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23322.c1 23322b4 \([1, 1, 0, -41746, 3265150]\) \(1666957239793/301806\) \(1456759917054\) \([2]\) \(73728\) \(1.3375\)  
23322.c2 23322b3 \([1, 1, 0, -18086, -913206]\) \(135559106353/5037138\) \(24313303032642\) \([2]\) \(73728\) \(1.3375\)  
23322.c3 23322b2 \([1, 1, 0, -2876, 38940]\) \(545338513/171396\) \(827295755364\) \([2, 2]\) \(36864\) \(0.99092\)  
23322.c4 23322b1 \([1, 1, 0, 504, 4464]\) \(2924207/3312\) \(-15986391408\) \([2]\) \(18432\) \(0.64434\) \(\Gamma_0(N)\)-optimal