Properties

Label 232845.b
Number of curves $1$
Conductor $232845$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 232845.b1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(19\)\(1\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 232845.b do not have complex multiplication.

Modular form 232845.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} - q^{3} + 2 q^{4} - q^{5} + 2 q^{6} + 4 q^{7} + q^{9} + 2 q^{10} - 3 q^{11} - 2 q^{12} + 3 q^{13} - 8 q^{14} + q^{15} - 4 q^{16} - 3 q^{17} - 2 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 232845.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
232845.b1 232845b1 \([0, -1, 1, -13550657126, -880504557300784]\) \(-5849020933249476332032897024/3734327290213641357421875\) \(-175684717310443435877947998046875\) \([]\) \(1195084800\) \(4.8886\) \(\Gamma_0(N)\)-optimal