Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
232050.a1 |
232050a2 |
232050.a |
232050a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{11} \cdot 3 \cdot 5^{9} \cdot 7^{10} \cdot 13^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10920$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$263577600$ |
$4.083206$ |
$72842281646368517444345813/2420970869326709446656$ |
$1.00024$ |
$5.99248$ |
$[1, 1, 0, -1087585200, -13403376096000]$ |
\(y^2+xy=x^3+x^2-1087585200x-13403376096000\) |
2.3.0.a.1, 120.6.0.?, 1820.6.0.?, 2184.6.0.?, 10920.12.0.? |
$[]$ |
232050.a2 |
232050a1 |
232050.a |
232050a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{22} \cdot 3^{2} \cdot 5^{9} \cdot 7^{5} \cdot 13^{3} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10920$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$131788800$ |
$3.736637$ |
$617408745689497165867/116417523517357031424$ |
$1.01769$ |
$5.51533$ |
$[1, 1, 0, 22174800, -724368096000]$ |
\(y^2+xy=x^3+x^2+22174800x-724368096000\) |
2.3.0.a.1, 120.6.0.?, 910.6.0.?, 2184.6.0.?, 10920.12.0.? |
$[]$ |
232050.b1 |
232050b1 |
232050.b |
232050b |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{15} \cdot 3^{9} \cdot 5^{10} \cdot 7^{4} \cdot 13^{3} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$111974400$ |
$3.618023$ |
$-112401674281331662890625/983243959823204352$ |
$1.04735$ |
$5.59995$ |
$[1, 1, 0, -214906575, 1221655177125]$ |
\(y^2+xy=x^3+x^2-214906575x+1221655177125\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 312.8.0.?, 1560.16.0.? |
$[]$ |
232050.b2 |
232050b2 |
232050.b |
232050b |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{5} \cdot 3^{3} \cdot 5^{10} \cdot 7^{12} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$335923200$ |
$4.167328$ |
$3294314317483299337109375/3752555319260703472608$ |
$1.06823$ |
$5.87214$ |
$[1, 1, 0, 662593425, 6460365277125]$ |
\(y^2+xy=x^3+x^2+662593425x+6460365277125\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 312.8.0.?, 1560.16.0.? |
$[]$ |
232050.c1 |
232050c4 |
232050.c |
232050c |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{5} \cdot 3^{4} \cdot 5^{7} \cdot 7^{4} \cdot 13^{8} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$4760$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$23592960$ |
$3.070923$ |
$193114674074930522660929/431512023674178720$ |
$0.96740$ |
$5.12146$ |
$[1, 1, 0, -30104900, -63467250000]$ |
\(y^2+xy=x^3+x^2-30104900x-63467250000\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 280.24.0.?, 340.12.0.?, $\ldots$ |
$[]$ |
232050.c2 |
232050c3 |
232050.c |
232050c |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{5} \cdot 3^{16} \cdot 5^{7} \cdot 7 \cdot 13^{2} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$4760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$23592960$ |
$3.070923$ |
$127657176479121674968129/680519365348848480$ |
$0.96599$ |
$5.08796$ |
$[1, 1, 0, -26224900, 51441910000]$ |
\(y^2+xy=x^3+x^2-26224900x+51441910000\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 140.12.0.?, 280.24.0.?, $\ldots$ |
$[]$ |
232050.c3 |
232050c2 |
232050.c |
232050c |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{8} \cdot 7^{2} \cdot 13^{4} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$4760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$11796480$ |
$2.724350$ |
$119430503535631998529/67932458958873600$ |
$0.97870$ |
$4.52345$ |
$[1, 1, 0, -2564900, -207870000]$ |
\(y^2+xy=x^3+x^2-2564900x-207870000\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 140.12.0.?, 280.24.0.?, 340.12.0.?, $\ldots$ |
$[]$ |
232050.c4 |
232050c1 |
232050.c |
232050c |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{20} \cdot 3^{4} \cdot 5^{10} \cdot 7 \cdot 13^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$4760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$5898240$ |
$2.377777$ |
$1813130050398593471/1067575541760000$ |
$0.96122$ |
$4.18449$ |
$[1, 1, 0, 635100, -25470000]$ |
\(y^2+xy=x^3+x^2+635100x-25470000\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 140.12.0.?, 238.6.0.?, $\ldots$ |
$[]$ |
232050.d1 |
232050d1 |
232050.d |
232050d |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{2} \cdot 3 \cdot 5^{13} \cdot 7 \cdot 13^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$185640$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$8257536$ |
$2.509724$ |
$21694782785921498399329/18854062500$ |
$0.95946$ |
$4.94451$ |
$[1, 1, 0, -14526150, 21303480000]$ |
\(y^2+xy=x^3+x^2-14526150x+21303480000\) |
2.3.0.a.1, 104.6.0.?, 3570.6.0.?, 185640.12.0.? |
$[]$ |
232050.d2 |
232050d2 |
232050.d |
232050d |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2 \cdot 3^{2} \cdot 5^{20} \cdot 7^{2} \cdot 13 \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$185640$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$16515072$ |
$2.856297$ |
$-21680224434060981542209/20225061035156250$ |
$0.95947$ |
$4.94459$ |
$[1, 1, 0, -14522900, 21313493250]$ |
\(y^2+xy=x^3+x^2-14522900x+21313493250\) |
2.3.0.a.1, 104.6.0.?, 7140.6.0.?, 185640.12.0.? |
$[]$ |
232050.e1 |
232050e1 |
232050.e |
232050e |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{6} \cdot 3^{3} \cdot 5^{7} \cdot 7 \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$185640$ |
$12$ |
$0$ |
$2.523781667$ |
$1$ |
|
$5$ |
$663552$ |
$1.139494$ |
$2986606123201/173759040$ |
$0.82949$ |
$3.10665$ |
$[1, 1, 0, -7500, 234000]$ |
\(y^2+xy=x^3+x^2-7500x+234000\) |
2.3.0.a.1, 104.6.0.?, 3570.6.0.?, 185640.12.0.? |
$[(65, 130)]$ |
232050.e2 |
232050e2 |
232050.e |
232050e |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{8} \cdot 7^{2} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$185640$ |
$12$ |
$0$ |
$1.261890833$ |
$1$ |
|
$6$ |
$1327104$ |
$1.486067$ |
$1177249106879/26840759400$ |
$0.88069$ |
$3.32657$ |
$[1, 1, 0, 5500, 975000]$ |
\(y^2+xy=x^3+x^2+5500x+975000\) |
2.3.0.a.1, 104.6.0.?, 7140.6.0.?, 185640.12.0.? |
$[(25, 1050)]$ |
232050.f1 |
232050f1 |
232050.f |
232050f |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{5} \cdot 3^{4} \cdot 5^{10} \cdot 7^{3} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$952$ |
$2$ |
$0$ |
$4.964815761$ |
$1$ |
|
$2$ |
$2188800$ |
$1.833220$ |
$2560938470975/2554257888$ |
$0.87382$ |
$3.61528$ |
$[1, 1, 0, 60925, -4897875]$ |
\(y^2+xy=x^3+x^2+60925x-4897875\) |
952.2.0.? |
$[(1421, 53636)]$ |
232050.g1 |
232050g1 |
232050.g |
232050g |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{11} \cdot 5^{10} \cdot 7 \cdot 13^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1428$ |
$2$ |
$0$ |
$8.970589315$ |
$1$ |
|
$0$ |
$33580800$ |
$3.213455$ |
$-3299590982040491993425/1628024213389392$ |
$0.97226$ |
$5.31322$ |
$[1, 1, 0, -66294700, -207878276000]$ |
\(y^2+xy=x^3+x^2-66294700x-207878276000\) |
1428.2.0.? |
$[(91096/3, 10602760/3)]$ |
232050.h1 |
232050h1 |
232050.h |
232050h |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{3} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 13^{3} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1.856075855$ |
$1$ |
|
$2$ |
$2737152$ |
$1.923475$ |
$-65418731364998335585/561272050560312$ |
$0.94617$ |
$3.95484$ |
$[1, 1, 0, -245455, 47050045]$ |
\(y^2+xy=x^3+x^2-245455x+47050045\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 312.8.0.?, 1560.16.0.? |
$[(509, 7115)]$ |
232050.h2 |
232050h2 |
232050.h |
232050h |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2 \cdot 3 \cdot 5^{2} \cdot 7^{6} \cdot 13^{9} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$5.568227567$ |
$1$ |
|
$2$ |
$8211456$ |
$2.472782$ |
$1878168045991367697215/2163353566836889518$ |
$1.03313$ |
$4.22539$ |
$[1, 1, 0, 751595, 249902035]$ |
\(y^2+xy=x^3+x^2+751595x+249902035\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 312.8.0.?, 1560.16.0.? |
$[(-1, 15785)]$ |
232050.i1 |
232050i4 |
232050.i |
232050i |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{5} \cdot 3^{16} \cdot 5^{10} \cdot 7^{8} \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8840$ |
$48$ |
$0$ |
$12.12983041$ |
$4$ |
$2$ |
$0$ |
$94371840$ |
$3.776585$ |
$1510081109246106278113639681/1096848548782442820000$ |
$0.99500$ |
$5.84705$ |
$[1, 1, 0, -597538000, -5618791700000]$ |
\(y^2+xy=x^3+x^2-597538000x-5618791700000\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 104.12.0.?, 136.12.0.?, $\ldots$ |
$[(700805/4, 461175965/4)]$ |
232050.i2 |
232050i2 |
232050.i |
232050i |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{14} \cdot 7^{4} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$8840$ |
$48$ |
$0$ |
$6.064915209$ |
$1$ |
|
$4$ |
$47185920$ |
$3.430012$ |
$646607877029383283239681/307756147280400000000$ |
$0.98662$ |
$5.21928$ |
$[1, 1, 0, -45038000, -49039200000]$ |
\(y^2+xy=x^3+x^2-45038000x-49039200000\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 68.12.0.b.1, 104.12.0.?, 340.24.0.?, $\ldots$ |
$[(40480, 8008560)]$ |
232050.i3 |
232050i1 |
232050.i |
232050i |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{20} \cdot 3^{4} \cdot 5^{10} \cdot 7^{2} \cdot 13^{4} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8840$ |
$48$ |
$0$ |
$3.032457604$ |
$1$ |
|
$3$ |
$23592960$ |
$3.083435$ |
$90758083644559925717761/1262941865902080000$ |
$1.00907$ |
$5.06035$ |
$[1, 1, 0, -23406000, 43048224000]$ |
\(y^2+xy=x^3+x^2-23406000x+43048224000\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 34.6.0.a.1, 68.12.0.g.1, $\ldots$ |
$[(-1056, 258576)]$ |
232050.i4 |
232050i3 |
232050.i |
232050i |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{5} \cdot 3^{4} \cdot 5^{22} \cdot 7^{2} \cdot 13 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8840$ |
$48$ |
$0$ |
$12.12983041$ |
$1$ |
|
$0$ |
$94371840$ |
$3.776585$ |
$29731073538607839137375999/21042153500976562500000$ |
$0.99970$ |
$5.52914$ |
$[1, 1, 0, 161350000, -372449196000]$ |
\(y^2+xy=x^3+x^2+161350000x-372449196000\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 104.12.0.?, 136.12.0.?, $\ldots$ |
$[(157951/2, 65604483/2)]$ |
232050.j1 |
232050j2 |
232050.j |
232050j |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2 \cdot 3^{2} \cdot 5^{9} \cdot 7^{2} \cdot 13^{6} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$61880$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3317760$ |
$1.997026$ |
$249535348381493/72373174146$ |
$0.89071$ |
$3.85566$ |
$[1, 1, 0, -163950, -18114750]$ |
\(y^2+xy=x^3+x^2-163950x-18114750\) |
2.3.0.a.1, 680.6.0.?, 1820.6.0.?, 12376.6.0.?, 61880.12.0.? |
$[]$ |
232050.j2 |
232050j1 |
232050.j |
232050j |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{2} \cdot 3^{4} \cdot 5^{9} \cdot 7 \cdot 13^{3} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$61880$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1658880$ |
$1.650454$ |
$1152011348587/1440028044$ |
$0.86079$ |
$3.43237$ |
$[1, 1, 0, 27300, -1858500]$ |
\(y^2+xy=x^3+x^2+27300x-1858500\) |
2.3.0.a.1, 680.6.0.?, 910.6.0.?, 12376.6.0.?, 61880.12.0.? |
$[]$ |
232050.k1 |
232050k3 |
232050.k |
232050k |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{6} \cdot 3 \cdot 5^{9} \cdot 7 \cdot 13^{6} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$185640$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$11943936$ |
$2.685867$ |
$2007723977307892862929/3983970919656000$ |
$0.95024$ |
$4.75187$ |
$[1, 1, 0, -6570525, -6474199875]$ |
\(y^2+xy=x^3+x^2-6570525x-6474199875\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 15.8.0-3.a.1.1, 30.24.0-6.a.1.1, $\ldots$ |
$[]$ |
232050.k2 |
232050k4 |
232050.k |
232050k |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{3} \cdot 3^{2} \cdot 5^{12} \cdot 7^{2} \cdot 13^{3} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$185640$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$23887872$ |
$3.032440$ |
$-592104935864247977809/2923291930001625000$ |
$0.96818$ |
$4.83552$ |
$[1, 1, 0, -4373525, -10870396875]$ |
\(y^2+xy=x^3+x^2-4373525x-10870396875\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 15.8.0-3.a.1.1, 30.24.0-6.a.1.1, $\ldots$ |
$[]$ |
232050.k3 |
232050k1 |
232050.k |
232050k |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{18} \cdot 3^{3} \cdot 5^{7} \cdot 7^{3} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$185640$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$3981312$ |
$2.136559$ |
$315388749557922769/34874134364160$ |
$0.91126$ |
$4.04293$ |
$[1, 1, 0, -354525, 72928125]$ |
\(y^2+xy=x^3+x^2-354525x+72928125\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 15.8.0-3.a.1.2, 30.24.0-6.a.1.2, $\ldots$ |
$[]$ |
232050.k4 |
232050k2 |
232050.k |
232050k |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{9} \cdot 3^{6} \cdot 5^{8} \cdot 7^{6} \cdot 13 \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$185640$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$7962624$ |
$2.483135$ |
$770467239466312751/4124458452441600$ |
$0.94121$ |
$4.28603$ |
$[1, 1, 0, 477475, 364960125]$ |
\(y^2+xy=x^3+x^2+477475x+364960125\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 15.8.0-3.a.1.2, 30.24.0-6.a.1.2, $\ldots$ |
$[]$ |
232050.l1 |
232050l3 |
232050.l |
232050l |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{5} \cdot 3 \cdot 5^{7} \cdot 7^{4} \cdot 13^{2} \cdot 17^{8} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$840$ |
$48$ |
$0$ |
$19.00065337$ |
$1$ |
|
$6$ |
$23592960$ |
$3.024303$ |
$15362574899903971015249/1358662138117021920$ |
$0.95965$ |
$4.91657$ |
$[1, 1, 0, -12947525, 16499590125]$ |
\(y^2+xy=x^3+x^2-12947525x+16499590125\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.2, 56.12.0.bb.1, $\ldots$ |
$[(5295, 307890), (4021, 169661)]$ |
232050.l2 |
232050l2 |
232050.l |
232050l |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{8} \cdot 7^{2} \cdot 13^{4} \cdot 17^{4} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$840$ |
$48$ |
$0$ |
$4.750163343$ |
$1$ |
|
$24$ |
$11796480$ |
$2.677727$ |
$156629955438678688849/26930700465177600$ |
$0.94284$ |
$4.54540$ |
$[1, 1, 0, -2807525, -1519189875]$ |
\(y^2+xy=x^3+x^2-2807525x-1519189875\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 56.12.0.a.1, 120.24.0.?, $\ldots$ |
$[(-945, 17535), (-854, 16443)]$ |
232050.l3 |
232050l1 |
232050.l |
232050l |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{20} \cdot 3 \cdot 5^{7} \cdot 7 \cdot 13^{2} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$840$ |
$48$ |
$0$ |
$19.00065337$ |
$1$ |
|
$7$ |
$5898240$ |
$2.331154$ |
$136168727651533554769/5377417543680$ |
$0.93887$ |
$4.53407$ |
$[1, 1, 0, -2679525, -1689301875]$ |
\(y^2+xy=x^3+x^2-2679525x-1689301875\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.4, 56.12.0.bb.1, $\ldots$ |
$[(-941, 490), (2075, 40075)]$ |
232050.l4 |
232050l4 |
232050.l |
232050l |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{5} \cdot 3^{4} \cdot 5^{10} \cdot 7 \cdot 13^{8} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$840$ |
$48$ |
$0$ |
$4.750163343$ |
$1$ |
|
$10$ |
$23592960$ |
$3.024303$ |
$1044501578620483645871/2673361662704460000$ |
$0.96503$ |
$4.79857$ |
$[1, 1, 0, 5284475, -8648241875]$ |
\(y^2+xy=x^3+x^2+5284475x-8648241875\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0-4.c.1.1, 56.12.0.v.1, $\ldots$ |
$[(1665, 68230), (4681, 342166)]$ |
232050.m1 |
232050m1 |
232050.m |
232050m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2 \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 13^{3} \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12376$ |
$2$ |
$0$ |
$0.359674014$ |
$1$ |
|
$4$ |
$5846400$ |
$2.224552$ |
$-4069400507818743889/31836860010774$ |
$0.95569$ |
$4.25102$ |
$[1, 1, 0, -831525, 293470875]$ |
\(y^2+xy=x^3+x^2-831525x+293470875\) |
12376.2.0.? |
$[(591, 2688)]$ |
232050.n1 |
232050n1 |
232050.n |
232050n |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{38} \cdot 3 \cdot 5^{13} \cdot 7^{3} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$185640$ |
$12$ |
$0$ |
$80.98426530$ |
$1$ |
|
$1$ |
$166699008$ |
$3.954510$ |
$1988913524286033370057329361/63486424158044160000000$ |
$0.99619$ |
$5.86934$ |
$[1, 1, 0, -654994125, -6271951747875]$ |
\(y^2+xy=x^3+x^2-654994125x-6271951747875\) |
2.3.0.a.1, 104.6.0.?, 3570.6.0.?, 185640.12.0.? |
$[(509184997454863045486505539658866715/3975577438281689, 153729366194377972674979576905838206424322199970989995/3975577438281689)]$ |
232050.n2 |
232050n2 |
232050.n |
232050n |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{19} \cdot 3^{2} \cdot 5^{20} \cdot 7^{6} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$185640$ |
$12$ |
$0$ |
$40.49213265$ |
$1$ |
|
$0$ |
$333398016$ |
$4.301086$ |
$54091567741920852884796719/12729810038400000000000000$ |
$1.03383$ |
$6.06367$ |
$[1, 1, 0, 196973875, -21431018371875]$ |
\(y^2+xy=x^3+x^2+196973875x-21431018371875\) |
2.3.0.a.1, 104.6.0.?, 7140.6.0.?, 185640.12.0.? |
$[(52274690927447918405/22820359, 377048323532385488839366882490/22820359)]$ |
232050.o1 |
232050o1 |
232050.o |
232050o |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{3} \cdot 3^{10} \cdot 5^{4} \cdot 7^{2} \cdot 13 \cdot 17^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1768$ |
$2$ |
$0$ |
$1.048453324$ |
$1$ |
|
$12$ |
$1175040$ |
$1.551561$ |
$41148944373575/1478389027752$ |
$0.93725$ |
$3.39127$ |
$[1, 1, 0, 6150, -1448100]$ |
\(y^2+xy=x^3+x^2+6150x-1448100\) |
1768.2.0.? |
$[(591, 14163), (115, 835)]$ |
232050.p1 |
232050p1 |
232050.p |
232050p |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{6} \cdot 3^{3} \cdot 5^{7} \cdot 7^{5} \cdot 13^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10920$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$30965760$ |
$3.239063$ |
$281943526619620204547055121/7092322735680$ |
$0.99033$ |
$5.71121$ |
$[1, 1, 0, -341522625, -2429420956875]$ |
\(y^2+xy=x^3+x^2-341522625x-2429420956875\) |
2.3.0.a.1, 104.6.0.?, 210.6.0.?, 10920.12.0.? |
$[]$ |
232050.p2 |
232050p2 |
232050.p |
232050p |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{8} \cdot 7^{10} \cdot 13 \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10920$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$61931520$ |
$3.585640$ |
$-281911331449611876318218641/44717442986035146600$ |
$0.99033$ |
$5.71123$ |
$[1, 1, 0, -341509625, -2429615137875]$ |
\(y^2+xy=x^3+x^2-341509625x-2429615137875\) |
2.3.0.a.1, 104.6.0.?, 420.6.0.?, 10920.12.0.? |
$[]$ |
232050.q1 |
232050q1 |
232050.q |
232050q |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{9} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$37128$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$142560$ |
$0.395486$ |
$-97651532785/21385728$ |
$0.81464$ |
$2.33470$ |
$[1, 1, 0, -280, -2240]$ |
\(y^2+xy=x^3+x^2-280x-2240\) |
37128.2.0.? |
$[]$ |
232050.r1 |
232050r1 |
232050.r |
232050r |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{2} \cdot 3^{2} \cdot 5^{8} \cdot 7^{2} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1768$ |
$12$ |
$0$ |
$1.717150067$ |
$1$ |
|
$7$ |
$1081344$ |
$1.482050$ |
$6540147208441729/126699300$ |
$0.88621$ |
$3.72922$ |
$[1, 1, 0, -97400, -11740500]$ |
\(y^2+xy=x^3+x^2-97400x-11740500\) |
2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.? |
$[(-181, 80)]$ |
232050.r2 |
232050r2 |
232050.r |
232050r |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2 \cdot 3^{4} \cdot 5^{10} \cdot 7^{4} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1768$ |
$12$ |
$0$ |
$3.434300135$ |
$1$ |
|
$4$ |
$2162688$ |
$1.828623$ |
$-5907066589696609/913331396250$ |
$0.88877$ |
$3.74014$ |
$[1, 1, 0, -94150, -12556250]$ |
\(y^2+xy=x^3+x^2-94150x-12556250\) |
2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.? |
$[(469, 6601)]$ |
232050.s1 |
232050s2 |
232050.s |
232050s |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{9} \cdot 3^{3} \cdot 5^{11} \cdot 7^{14} \cdot 13^{4} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$14280$ |
$12$ |
$0$ |
$14.90629884$ |
$1$ |
|
$0$ |
$487710720$ |
$4.567413$ |
$656951279855452335833136583681/241839679711912280107200000$ |
$1.01784$ |
$6.33880$ |
$[1, 1, 0, -4527688000, -70738252736000]$ |
\(y^2+xy=x^3+x^2-4527688000x-70738252736000\) |
2.3.0.a.1, 120.6.0.?, 476.6.0.?, 14280.12.0.? |
$[(3061604505/47, 169130099435695/47)]$ |
232050.s2 |
232050s1 |
232050.s |
232050s |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{18} \cdot 3^{6} \cdot 5^{16} \cdot 7^{7} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$14280$ |
$12$ |
$0$ |
$29.81259769$ |
$1$ |
|
$1$ |
$243855360$ |
$4.220833$ |
$4698067216568883444047416319/4415596696143360000000000$ |
$1.00935$ |
$5.93892$ |
$[1, 1, 0, 872312000, -7833652736000]$ |
\(y^2+xy=x^3+x^2+872312000x-7833652736000\) |
2.3.0.a.1, 120.6.0.?, 238.6.0.?, 14280.12.0.? |
$[(8568253302073505/157403, 795258498562513488100930/157403)]$ |
232050.t1 |
232050t1 |
232050.t |
232050t |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2 \cdot 3^{13} \cdot 5^{6} \cdot 7 \cdot 13 \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$37128$ |
$2$ |
$0$ |
$8.171357584$ |
$1$ |
|
$2$ |
$2545920$ |
$1.958811$ |
$-153509362902771121/1425589419618$ |
$0.93988$ |
$3.98594$ |
$[1, 1, 0, -278875, -57253625]$ |
\(y^2+xy=x^3+x^2-278875x-57253625\) |
37128.2.0.? |
$[(17385, 2282570)]$ |
232050.u1 |
232050u1 |
232050.u |
232050u |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{4} \cdot 5^{6} \cdot 7^{4} \cdot 13^{10} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1768$ |
$12$ |
$0$ |
$1.065378312$ |
$1$ |
|
$9$ |
$206438400$ |
$3.948193$ |
$448370126000857162602152353/134883063988931602326528$ |
$1.02435$ |
$5.74876$ |
$[1, 1, 0, -398637050, -2122972603500]$ |
\(y^2+xy=x^3+x^2-398637050x-2122972603500\) |
2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.? |
$[(-10045, 936635)]$ |
232050.u2 |
232050u2 |
232050.u |
232050u |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{5} \cdot 3^{8} \cdot 5^{6} \cdot 7^{8} \cdot 13^{5} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1768$ |
$12$ |
$0$ |
$2.130756624$ |
$1$ |
|
$6$ |
$412876800$ |
$4.294769$ |
$9078932501639240351982661727/10847124527712371223290784$ |
$1.03641$ |
$5.99730$ |
$[1, 1, 0, 1086534950, -14222668887500]$ |
\(y^2+xy=x^3+x^2+1086534950x-14222668887500\) |
2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.? |
$[(60259, 16403515)]$ |
232050.v1 |
232050v1 |
232050.v |
232050v |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{7} \cdot 3^{5} \cdot 5^{9} \cdot 7^{2} \cdot 13^{3} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26520$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2822400$ |
$1.950787$ |
$1694948987467/56923461504$ |
$0.90944$ |
$3.77890$ |
$[1, 1, 0, 31050, 15916500]$ |
\(y^2+xy=x^3+x^2+31050x+15916500\) |
26520.2.0.? |
$[]$ |
232050.w1 |
232050w1 |
232050.w |
232050w |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \cdot 17 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1768$ |
$2$ |
$0$ |
$1.691785076$ |
$1$ |
|
$8$ |
$55296$ |
$-0.028323$ |
$272199695/194922$ |
$0.76476$ |
$1.83257$ |
$[1, 1, 0, 40, -30]$ |
\(y^2+xy=x^3+x^2+40x-30\) |
1768.2.0.? |
$[(1, 3), (11/2, 73/2)]$ |
232050.x1 |
232050x4 |
232050.x |
232050x |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3 \cdot 5^{6} \cdot 7 \cdot 13 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$185640$ |
$48$ |
$0$ |
$3.056262343$ |
$4$ |
$2$ |
$4$ |
$2097152$ |
$1.820601$ |
$1399279497274949473/364819728$ |
$1.02360$ |
$4.16352$ |
$[1, 1, 0, -582550, -171381500]$ |
\(y^2+xy=x^3+x^2-582550x-171381500\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 136.12.0.?, 546.6.0.?, $\ldots$ |
$[(-441, 226)]$ |
232050.x2 |
232050x2 |
232050.x |
232050x |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{6} \cdot 7^{2} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$92820$ |
$48$ |
$0$ |
$1.528131171$ |
$1$ |
|
$12$ |
$1048576$ |
$1.474026$ |
$345608484635233/5513953536$ |
$0.98799$ |
$3.49122$ |
$[1, 1, 0, -36550, -2667500]$ |
\(y^2+xy=x^3+x^2-36550x-2667500\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 68.12.0.a.1, 340.24.0.?, 1092.12.0.?, $\ldots$ |
$[(325, 4300)]$ |
232050.x3 |
232050x1 |
232050.x |
232050x |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{16} \cdot 3 \cdot 5^{6} \cdot 7 \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$185640$ |
$48$ |
$0$ |
$3.056262343$ |
$1$ |
|
$5$ |
$524288$ |
$1.127453$ |
$666940371553/304152576$ |
$0.87689$ |
$2.98531$ |
$[1, 1, 0, -4550, 52500]$ |
\(y^2+xy=x^3+x^2-4550x+52500\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 136.12.0.?, 340.12.0.?, $\ldots$ |
$[(85, 495)]$ |
232050.x4 |
232050x3 |
232050.x |
232050x |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{4} \cdot 5^{6} \cdot 7^{4} \cdot 13^{4} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$185640$ |
$48$ |
$0$ |
$3.056262343$ |
$1$ |
|
$4$ |
$2097152$ |
$1.820601$ |
$-117433042273/1510843540752$ |
$1.00331$ |
$3.65489$ |
$[1, 1, 0, -2550, -7393500]$ |
\(y^2+xy=x^3+x^2-2550x-7393500\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 68.12.0.h.1, 340.24.0.?, $\ldots$ |
$[(309, 4476)]$ |