Properties

Label 23120.j
Number of curves $4$
Conductor $23120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 23120.j have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 23120.j do not have complex multiplication.

Modular form 23120.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} + q^{5} + 2 q^{7} + q^{9} + 6 q^{11} + 2 q^{13} - 2 q^{15} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 23120.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23120.j1 23120bk3 \([0, 1, 0, -19275240, 6400558900]\) \(8010684753304969/4456448000000\) \(440597795204759552000000\) \([2]\) \(3317760\) \(3.2272\)  
23120.j2 23120bk1 \([0, 1, 0, -11807480, -15620214572]\) \(1841373668746009/31443200\) \(3108710029642956800\) \([2]\) \(1105920\) \(2.6779\) \(\Gamma_0(N)\)-optimal
23120.j3 23120bk2 \([0, 1, 0, -11437560, -16644301100]\) \(-1673672305534489/241375690000\) \(-23864206836931010560000\) \([2]\) \(2211840\) \(3.0245\)  
23120.j4 23120bk4 \([0, 1, 0, 75424280, 50757814068]\) \(479958568556831351/289000000000000\) \(-28572702478336000000000000\) \([2]\) \(6635520\) \(3.5738\)