Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2-1183x-2363\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z-1183xz^2-2363z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1533843x-87243858\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-9, 92)$ | $0.54833888372488629994501524339$ | $\infty$ |
| $(-34, 17)$ | $0$ | $2$ |
| $(-2, 1)$ | $0$ | $2$ |
Integral points
\( \left(-34, 17\right) \), \( \left(-26, 121\right) \), \( \left(-26, -95\right) \), \( \left(-23, 127\right) \), \( \left(-23, -104\right) \), \( \left(-9, 92\right) \), \( \left(-9, -83\right) \), \( \left(-2, 1\right) \), \( \left(47, 197\right) \), \( \left(47, -244\right) \), \( \left(54, 281\right) \), \( \left(54, -335\right) \), \( \left(166, 2017\right) \), \( \left(166, -2183\right) \), \( \left(241, 3592\right) \), \( \left(241, -3833\right) \), \( \left(5598, 416081\right) \), \( \left(5598, -421679\right) \)
Invariants
| Conductor: | $N$ | = | \( 2310 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $104587560000$ | = | $2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 7^{4} \cdot 11^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{183337554283129}{104587560000} \) | = | $2^{-6} \cdot 3^{-2} \cdot 5^{-4} \cdot 7^{-4} \cdot 11^{-2} \cdot 56809^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.80423234243670519282461955753$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.80423234243670519282461955753$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9955942229446829$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.2404568418846385$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.54833888372488629994501524339$ |
|
| Real period: | $\Omega$ | ≈ | $0.88082986142989993640322642651$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2\cdot2\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $1.9319730518720704522484675001 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.931973052 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.880830 \cdot 0.548339 \cdot 64}{4^2} \\ & \approx 1.931973052\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3072 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $7$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 8.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 264 = 2^{3} \cdot 3 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 89 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 199 & 4 \\ 134 & 9 \end{array}\right),\left(\begin{array}{rr} 145 & 4 \\ 26 & 9 \end{array}\right),\left(\begin{array}{rr} 135 & 2 \\ 262 & 263 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 261 & 4 \\ 260 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[264])$ is a degree-$20275200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/264\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 1 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 385 = 5 \cdot 7 \cdot 11 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \) |
| $7$ | split multiplicative | $8$ | \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| $11$ | split multiplicative | $12$ | \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 2310c
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $4$ | \(\Q(\sqrt{-2}, \sqrt{-11})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{3}, \sqrt{11})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.2.3892034846266875.6 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | 16.0.6040479020157644046336.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | nonsplit | split | split | ord | ord | ss | ord | ord | ss | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | 3 | 1 | 2 | 2 | 1 | 1 | 1,1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.