Properties

Label 23100.q
Number of curves $1$
Conductor $23100$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 23100.q1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 7 T + 29 T^{2}\) 1.29.h
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 23100.q do not have complex multiplication.

Modular form 23100.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{7} + q^{9} + q^{11} + 6 q^{13} + 3 q^{17} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 23100.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23100.q1 23100m1 \([0, -1, 0, -49105133, 132522832137]\) \(-3273741656681120014336/1733575611796875\) \(-6934302447187500000000\) \([]\) \(2177280\) \(3.1409\) \(\Gamma_0(N)\)-optimal