Properties

Label 2304.a
Number of curves $2$
Conductor $2304$
CM \(\Q(\sqrt{-1}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2304.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
2304.a1 2304p2 \([0, 0, 0, -72, 0]\) \(1728\) \(23887872\) \([2]\) \(512\) \(0.10521\)   \(-4\)
2304.a2 2304p1 \([0, 0, 0, 18, 0]\) \(1728\) \(-373248\) \([2]\) \(256\) \(-0.24137\) \(\Gamma_0(N)\)-optimal \(-4\)

Rank

sage: E.rank()
 

The elliptic curves in class 2304.a have rank \(1\).

Complex multiplication

Each elliptic curve in class 2304.a has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).

Modular form 2304.2.a.a

sage: E.q_eigenform(10)
 
\(q - 4q^{5} + 4q^{13} + 2q^{17} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.