Properties

Label 229320.bi
Number of curves $4$
Conductor $229320$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bi1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 229320.bi have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 229320.bi do not have complex multiplication.

Modular form 229320.2.a.bi

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 229320.bi

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
229320.bi1 229320dx3 \([0, 0, 0, -3394083, 2400956782]\) \(49235161015876/137109375\) \(12041563388400000000\) \([2]\) \(4718592\) \(2.5338\)  
229320.bi2 229320dx4 \([0, 0, 0, -3164763, -2158887962]\) \(39914580075556/172718325\) \(15168901899128140800\) \([2]\) \(4718592\) \(2.5338\)  
229320.bi3 229320dx2 \([0, 0, 0, -298263, 4172938]\) \(133649126224/77000625\) \(1690635499731360000\) \([2, 2]\) \(2359296\) \(2.1872\)  
229320.bi4 229320dx1 \([0, 0, 0, 74382, 521017]\) \(33165879296/19278675\) \(-26455314764314800\) \([2]\) \(1179648\) \(1.8406\) \(\Gamma_0(N)\)-optimal