Properties

Label 228888b
Number of curves $1$
Conductor $228888$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 228888b1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 228888b do not have complex multiplication.

Modular form 228888.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{5} + q^{11} - 4 q^{13} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 228888b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
228888.h1 228888b1 \([0, 0, 0, -4731219, -4198934754]\) \(-2249178948/161051\) \(-838652955421315009536\) \([]\) \(9596160\) \(2.7648\) \(\Gamma_0(N)\)-optimal