Properties

Label 228888.cm
Number of curves $2$
Conductor $228888$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cm1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 228888.cm have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 228888.cm do not have complex multiplication.

Modular form 228888.2.a.cm

Copy content sage:E.q_eigenform(10)
 
\(q + 4 q^{5} + 4 q^{7} + q^{11} + 2 q^{13} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 228888.cm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
228888.cm1 228888z1 \([0, 0, 0, -198543, -16262030]\) \(192143824/85833\) \(386647595730747648\) \([2]\) \(4423680\) \(2.0702\) \(\Gamma_0(N)\)-optimal
228888.cm2 228888z2 \([0, 0, 0, 685797, -121498490]\) \(1979654684/1499553\) \(-27019843748713423872\) \([2]\) \(8847360\) \(2.4167\)