Properties

Label 2280.j
Number of curves $4$
Conductor $2280$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2280.j have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2280.j do not have complex multiplication.

Modular form 2280.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + 4 q^{7} + q^{9} + 2 q^{13} + q^{15} + 2 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 2280.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2280.j1 2280j3 \([0, 1, 0, -480, 3600]\) \(11968836484/961875\) \(984960000\) \([4]\) \(1024\) \(0.46886\)  
2280.j2 2280j2 \([0, 1, 0, -100, -352]\) \(436334416/81225\) \(20793600\) \([2, 2]\) \(512\) \(0.12229\)  
2280.j3 2280j1 \([0, 1, 0, -95, -390]\) \(5988775936/285\) \(4560\) \([2]\) \(256\) \(-0.22429\) \(\Gamma_0(N)\)-optimal
2280.j4 2280j4 \([0, 1, 0, 200, -1792]\) \(859687196/1954815\) \(-2001730560\) \([2]\) \(1024\) \(0.46886\)