Properties

Label 227154.p
Number of curves $1$
Conductor $227154$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 227154.p1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(17\)\(1\)
\(131\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 227154.p do not have complex multiplication.

Modular form 227154.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + 3 q^{5} - q^{6} + 3 q^{7} + q^{8} + q^{9} + 3 q^{10} + 5 q^{11} - q^{12} - 6 q^{13} + 3 q^{14} - 3 q^{15} + q^{16} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 227154.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
227154.p1 227154l1 \([1, 1, 1, -12144, 189009]\) \(8205738913/4074624\) \(98351517949056\) \([]\) \(1447040\) \(1.3779\) \(\Gamma_0(N)\)-optimal