Properties

Label 227136a
Number of curves $2$
Conductor $227136$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 227136a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 227136a do not have complex multiplication.

Modular form 227136.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 4 q^{5} + q^{7} + q^{9} - 4 q^{15} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 227136a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
227136.eu1 227136a1 \([0, 1, 0, -2037845, 1119027339]\) \(416013434950254592/771895089\) \(1736553994785792\) \([2]\) \(4423680\) \(2.1802\) \(\Gamma_0(N)\)-optimal
227136.eu2 227136a2 \([0, 1, 0, -2016785, 1143309519]\) \(-25203028990703632/1121144263281\) \(-40356314258282201088\) \([2]\) \(8847360\) \(2.5268\)