Properties

Label 227136.fx
Number of curves $4$
Conductor $227136$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 227136.fx have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 227136.fx do not have complex multiplication.

Modular form 227136.2.a.fx

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} - q^{7} + q^{9} + 4 q^{11} - 2 q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 227136.fx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
227136.fx1 227136r4 \([0, 1, 0, -21161729, -37468729089]\) \(828279937799497/193444524\) \(244769035241105915904\) \([2]\) \(12386304\) \(2.9028\)  
227136.fx2 227136r2 \([0, 1, 0, -1476609, -441018369]\) \(281397674377/96589584\) \(122216637623816945664\) \([2, 2]\) \(6193152\) \(2.5563\)  
227136.fx3 227136r1 \([0, 1, 0, -611329, 178695167]\) \(19968681097/628992\) \(795875540081836032\) \([2]\) \(3096576\) \(2.2097\) \(\Gamma_0(N)\)-optimal
227136.fx4 227136r3 \([0, 1, 0, 4364031, -3061129473]\) \(7264187703863/7406095788\) \(-9371073853359519694848\) \([2]\) \(12386304\) \(2.9028\)