Properties

Label 225420y
Number of curves $1$
Conductor $225420$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 225420y1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(13\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 225420y do not have complex multiplication.

Modular form 225420.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 3 q^{7} + q^{9} + 5 q^{11} + q^{13} - q^{15} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 225420y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
225420.l1 225420y1 \([0, -1, 0, -66430, -6568523]\) \(-412435709457152/34701615\) \(-2727824551920\) \([]\) \(814080\) \(1.4295\) \(\Gamma_0(N)\)-optimal