Properties

Label 22491d
Number of curves $1$
Conductor $22491$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 22491d1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 22491d do not have complex multiplication.

Modular form 22491.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - q^{5} + 3 q^{8} + q^{10} + 3 q^{11} + 2 q^{13} - q^{16} - q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 22491d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
22491.k1 22491d1 \([1, -1, 1, -92693, -10863422]\) \(-38034753147/99127\) \(-229546933461909\) \([]\) \(82944\) \(1.6312\) \(\Gamma_0(N)\)-optimal