Properties

Label 22491.t
Number of curves $1$
Conductor $22491$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 22491.t1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 5 T + 23 T^{2}\) 1.23.af
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 22491.t do not have complex multiplication.

Modular form 22491.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} - 2 q^{5} + 3 q^{11} + 3 q^{13} + 4 q^{16} + q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 22491.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
22491.t1 22491l1 \([0, 0, 1, -114366, -23224959]\) \(-5786553778176/4802079233\) \(-137285236183021731\) \([]\) \(149760\) \(1.9863\) \(\Gamma_0(N)\)-optimal