Properties

Label 22491.h
Number of curves $1$
Conductor $22491$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 22491.h1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 22491.h do not have complex multiplication.

Modular form 22491.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - q^{5} + 3 q^{8} + q^{10} - 5 q^{11} + 2 q^{13} - q^{16} - q^{17} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 22491.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
22491.h1 22491e1 \([1, -1, 1, -77236823, 261286417900]\) \(-2444977514677360323/168962983\) \(-3521385813613243149\) \([]\) \(1741824\) \(3.0132\) \(\Gamma_0(N)\)-optimal