Properties

Label 223440.fn
Number of curves $1$
Conductor $223440$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 223440.fn1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 223440.fn do not have complex multiplication.

Modular form 223440.2.a.fn

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{9} - 5 q^{11} - q^{13} + q^{15} + 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 223440.fn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
223440.fn1 223440d1 \([0, 1, 0, -59134481956440, -175089732594702786540]\) \(-138357846491853121383730987168838623/55816105091607428996184145920\) \(-9225753268786893570016950370657621770240\) \([]\) \(22983367680\) \(6.6319\) \(\Gamma_0(N)\)-optimal