Properties

Label 221778c
Number of curves $4$
Conductor $221778$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 221778c have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(37\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 221778c do not have complex multiplication.

Modular form 221778.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 2 q^{7} + q^{8} + 3 q^{11} - 2 q^{13} + 2 q^{14} + q^{16} - 3 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 7 & 21 \\ 3 & 1 & 21 & 7 \\ 7 & 21 & 1 & 3 \\ 21 & 7 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 221778c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
221778.q4 221778c1 \([1, -1, 1, 3850, -15209]\) \(3375/2\) \(-3740829104322\) \([]\) \(308448\) \(1.1019\) \(\Gamma_0(N)\)-optimal
221778.q3 221778c2 \([1, -1, 1, -57755, -5584301]\) \(-140625/8\) \(-1212028629800328\) \([]\) \(925344\) \(1.6512\)  
221778.q1 221778c3 \([1, -1, 1, -1474670, 689640445]\) \(-189613868625/128\) \(-239413062676608\) \([]\) \(2159136\) \(2.0748\)  
221778.q2 221778c4 \([1, -1, 1, -1166645, 985541581]\) \(-1159088625/2097152\) \(-317726033130377183232\) \([]\) \(6477408\) \(2.6241\)