Properties

Label 221760.dd
Number of curves $4$
Conductor $221760$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 221760.dd have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 221760.dd do not have complex multiplication.

Modular form 221760.2.a.dd

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - q^{7} + q^{11} + 4 q^{13} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 221760.dd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
221760.dd1 221760fa4 \([0, 0, 0, -15042828, -21820184048]\) \(1969902499564819009/63690429687500\) \(12171430656000000000000\) \([2]\) \(15925248\) \(3.0117\)  
221760.dd2 221760fa2 \([0, 0, 0, -2059788, 1127734288]\) \(5057359576472449/51765560000\) \(9892552570306560000\) \([2]\) \(5308416\) \(2.4624\)  
221760.dd3 221760fa1 \([0, 0, 0, -32268, 43416592]\) \(-19443408769/4249907200\) \(-812169913643827200\) \([2]\) \(2654208\) \(2.1158\) \(\Gamma_0(N)\)-optimal
221760.dd4 221760fa3 \([0, 0, 0, 290292, -1169538032]\) \(14156681599871/3100231750000\) \(-592463513714688000000\) \([2]\) \(7962624\) \(2.6651\)