Properties

Label 221760.cp
Number of curves $4$
Conductor $221760$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 221760.cp have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 221760.cp do not have complex multiplication.

Modular form 221760.2.a.cp

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - q^{7} + q^{11} + 2 q^{13} - 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 221760.cp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
221760.cp1 221760lp3 \([0, 0, 0, -6082560588, 182590332294512]\) \(130231365028993807856757649/4753980000\) \(908499725844480000\) \([2]\) \(94371840\) \(3.8642\)  
221760.cp2 221760lp4 \([0, 0, 0, -387256908, 2740920038768]\) \(33608860073906150870929/2466782226562500000\) \(471409424640000000000000000\) \([2]\) \(94371840\) \(3.8642\)  
221760.cp3 221760lp2 \([0, 0, 0, -380160588, 2852965254512]\) \(31794905164720991157649/192099600000000\) \(36710805248409600000000\) \([2, 2]\) \(47185920\) \(3.5177\)  
221760.cp4 221760lp1 \([0, 0, 0, -23317068, 46319601008]\) \(-7336316844655213969/604492922880000\) \(-115520396533306490880000\) \([2]\) \(23592960\) \(3.1711\) \(\Gamma_0(N)\)-optimal