Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-1879992x-994555584\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-1879992xz^2-994555584z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-30079875x-63681637250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(35911/4, 6684439/8)$ | $6.5314926812654806460044713198$ | $\infty$ |
| $(1584, -792)$ | $0$ | $2$ |
Integral points
\( \left(1584, -792\right) \)
Invariants
| Conductor: | $N$ | = | \( 22050 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-2459086221312000000$ | = | $-1 \cdot 2^{18} \cdot 3^{6} \cdot 5^{6} \cdot 7^{7} $ |
|
| j-invariant: | $j$ | = | \( -\frac{548347731625}{1835008} \) | = | $-1 \cdot 2^{-18} \cdot 5^{3} \cdot 7^{-1} \cdot 1637^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3935075652218734884228449509$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.066527390143111802872166294101$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0293250379726038$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.495383513340652$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.5314926812654806460044713198$ |
|
| Real period: | $\Omega$ | ≈ | $0.064453058648722025667267803288$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.3677974467944216023702447930 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.367797447 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.064453 \cdot 6.531493 \cdot 32}{2^2} \\ & \approx 3.367797447\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 497664 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{18}$ | nonsplit multiplicative | 1 | 1 | 18 | 18 |
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $7$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.1 |
| $3$ | 3B | 9.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \), index $864$, genus $21$, and generators
$\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 1261 & 540 \\ 10 & 361 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 720 & 1099 \end{array}\right),\left(\begin{array}{rr} 2485 & 36 \\ 2484 & 37 \end{array}\right),\left(\begin{array}{rr} 1619 & 1980 \\ 920 & 979 \end{array}\right),\left(\begin{array}{rr} 1724 & 495 \\ 785 & 1334 \end{array}\right),\left(\begin{array}{rr} 503 & 0 \\ 0 & 2519 \end{array}\right),\left(\begin{array}{rr} 631 & 540 \\ 1270 & 361 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 14 & 253 \end{array}\right)$.
The torsion field $K:=\Q(E[2520])$ is a degree-$6688604160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2520\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 11025 = 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
| $3$ | additive | $6$ | \( 1225 = 5^{2} \cdot 7^{2} \) |
| $5$ | additive | $14$ | \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \) |
| $7$ | additive | $32$ | \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 6, 9 and 18.
Its isogeny class 22050bi
consists of 6 curves linked by isogenies of
degrees dividing 18.
Twists
The minimal quadratic twist of this elliptic curve is 14a3, its twist by $105$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-7}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-35}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.2.100800.3 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{5}, \sqrt{-7})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.4594613625.1 | \(\Z/6\Z\) | not in database |
| $6$ | 6.0.13783840875.1 | \(\Z/18\Z\) | not in database |
| $8$ | 8.0.497871360000.30 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.6098924160000.23 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.497871360000.36 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | 12.0.34896906600120140625.5 | \(\Z/18\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | 12.0.189994269267320765625.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | add | add | ss | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 6 | - | - | - | 1,1 | 1 | 1 | 1 | 1,1 | 1 | 3 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | - | - | - | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.