Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-7155176x-7362514208\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-7155176xz^2-7362514208z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-114482819x-471315392130\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-6269/4, 6269/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 22022 \) | = | $2 \cdot 7 \cdot 11^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $15861601248516479456$ | = | $2^{5} \cdot 7^{3} \cdot 11^{6} \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{22868021811807457713}{8953460393696} \) | = | $2^{-5} \cdot 3^{3} \cdot 7^{-3} \cdot 13^{-8} \cdot 349^{3} \cdot 2711^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6489544035320722459934137022$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4500067671328869739624419132$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.087583326356874$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.896483843216226$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.092311259480207239091598649866$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 96 $ = $ 1\cdot3\cdot2^{2}\cdot2^{3} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $2.2154702275249737381983675968 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.215470228 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.092311 \cdot 1.000000 \cdot 96}{2^2} \\ & \approx 2.215470228\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 921600 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
$7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$11$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$13$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.9 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 616 = 2^{3} \cdot 7 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 609 & 8 \\ 608 & 9 \end{array}\right),\left(\begin{array}{rr} 232 & 99 \\ 473 & 166 \end{array}\right),\left(\begin{array}{rr} 12 & 561 \\ 55 & 342 \end{array}\right),\left(\begin{array}{rr} 559 & 0 \\ 0 & 615 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 584 & 561 \\ 385 & 320 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 610 & 611 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[616])$ is a degree-$851558400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/616\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 847 = 7 \cdot 11^{2} \) |
$3$ | good | $2$ | \( 3146 = 2 \cdot 11^{2} \cdot 13 \) |
$5$ | good | $2$ | \( 11011 = 7 \cdot 11^{2} \cdot 13 \) |
$7$ | split multiplicative | $8$ | \( 3146 = 2 \cdot 11^{2} \cdot 13 \) |
$11$ | additive | $62$ | \( 182 = 2 \cdot 7 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 1694 = 2 \cdot 7 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 22022i
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 182a4, its twist by $-11$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-77}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-22}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{14}, \sqrt{-22})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.7224684483444736.4 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.7055355940864.18 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.3009031438336.14 | \(\Z/8\Z\) | not in database |
$8$ | 8.2.14632310742192.2 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 7 | 11 | 13 |
---|---|---|---|---|---|
Reduction type | nonsplit | ss | split | add | split |
$\lambda$-invariant(s) | 3 | 2,2 | 1 | - | 7 |
$\mu$-invariant(s) | 1 | 0,0 | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.