Properties

Label 218400.by
Number of curves $4$
Conductor $218400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("by1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 218400.by have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 218400.by do not have complex multiplication.

Modular form 218400.2.a.by

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{7} + q^{9} - q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 218400.by

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
218400.by1 218400fb4 \([0, -1, 0, -122008, -16360988]\) \(25107427013768/2985255\) \(23882040000000\) \([2]\) \(983040\) \(1.5922\)  
218400.by2 218400fb2 \([0, -1, 0, -47633, 3847137]\) \(186756901696/8996715\) \(575789760000000\) \([2]\) \(983040\) \(1.5922\)  
218400.by3 218400fb1 \([0, -1, 0, -8258, -208488]\) \(62287505344/16769025\) \(16769025000000\) \([2, 2]\) \(491520\) \(1.2457\) \(\Gamma_0(N)\)-optimal
218400.by4 218400fb3 \([0, -1, 0, 20992, -1378488]\) \(127871714872/175573125\) \(-1404585000000000\) \([2]\) \(983040\) \(1.5922\)