Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-26432x-5244960\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-26432xz^2-5244960z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2141019x-3817152810\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(223, 0)$ | $0$ | $2$ |
Integral points
\( \left(223, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 2184 \) | = | $2^{3} \cdot 3 \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $-10662340271192064$ | = | $-1 \cdot 2^{11} \cdot 3^{12} \cdot 7^{3} \cdot 13^{4} $ |
|
| j-invariant: | $j$ | = | \( -\frac{997241325462146}{5206220835543} \) | = | $-1 \cdot 2 \cdot 3^{-12} \cdot 7^{-3} \cdot 13^{-4} \cdot 179^{3} \cdot 443^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7596917596061609262043838674$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1243068440928777259052544227$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0137478498120591$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.783045979765779$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.16865373225430285614635022227$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 72 $ = $ 1\cdot( 2^{2} \cdot 3 )\cdot3\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $3.0357671805774514106343040009 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.035767181 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.168654 \cdot 1.000000 \cdot 72}{2^2} \\ & \approx 3.035767181\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 16128 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II^{*}$ | additive | -1 | 3 | 11 | 0 |
| $3$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
| $7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $13$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.7 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 2017 & 8 \\ 1516 & 33 \end{array}\right),\left(\begin{array}{rr} 2177 & 8 \\ 2176 & 9 \end{array}\right),\left(\begin{array}{rr} 1457 & 8 \\ 1460 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 1368 & 281 \\ 811 & 798 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 2178 & 2179 \end{array}\right),\left(\begin{array}{rr} 827 & 820 \\ 866 & 1917 \end{array}\right),\left(\begin{array}{rr} 1256 & 3 \\ 1877 & 2 \end{array}\right)$.
The torsion field $K:=\Q(E[2184])$ is a degree-$81155063808$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2184\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 7 \) |
| $3$ | split multiplicative | $4$ | \( 104 = 2^{3} \cdot 13 \) |
| $7$ | split multiplicative | $8$ | \( 312 = 2^{3} \cdot 3 \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 168 = 2^{3} \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 2184.m
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{7}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-2}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-2}, \sqrt{7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.493455671296.15 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.1114824786776064.27 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | 8.2.63962016768.2 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 7 | 13 |
|---|---|---|---|---|
| Reduction type | add | split | split | nonsplit |
| $\lambda$-invariant(s) | - | 3 | 3 | 0 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.