Show commands: SageMath
Rank
The elliptic curves in class 217800eq have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 217800eq do not have complex multiplication.Modular form 217800.2.a.eq
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 217800eq
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 217800.f3 | 217800eq1 | \([0, 0, 0, -92982450, 344943124625]\) | \(275361373935616/148240125\) | \(47861843289514031250000\) | \([2]\) | \(35389440\) | \(3.3010\) | \(\Gamma_0(N)\)-optimal |
| 217800.f2 | 217800eq2 | \([0, 0, 0, -109453575, 214310632250]\) | \(28071778927696/12404390625\) | \(64079492668605562500000000\) | \([2, 2]\) | \(70778880\) | \(3.6476\) | |
| 217800.f4 | 217800eq3 | \([0, 0, 0, 375695925, 1596501557750]\) | \(283811208976796/217529296875\) | \(-4494913907730468750000000000\) | \([2]\) | \(141557760\) | \(3.9942\) | |
| 217800.f1 | 217800eq4 | \([0, 0, 0, -858141075, -9528359805250]\) | \(3382175663521924/59189241375\) | \(1223056149523552278000000000\) | \([2]\) | \(141557760\) | \(3.9942\) |