Properties

Label 2178.k
Number of curves $1$
Conductor $2178$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 2178.k1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2178.k do not have complex multiplication.

Modular form 2178.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} + 4 q^{7} + q^{8} + q^{10} - 3 q^{13} + 4 q^{14} + q^{16} - q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 2178.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2178.k1 2178i1 \([1, -1, 1, 194908, 50284743]\) \(43307231/82944\) \(-1568336880910795776\) \([]\) \(42240\) \(2.1760\) \(\Gamma_0(N)\)-optimal