Properties

Label 21675bb
Number of curves $1$
Conductor $21675$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 21675bb1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 21675bb do not have complex multiplication.

Modular form 21675.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{6} + 2 q^{7} + q^{9} + 3 q^{11} + 2 q^{12} + 4 q^{13} - 4 q^{14} - 4 q^{16} - 2 q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 21675bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
21675.f1 21675bb1 \([0, 1, 1, -8188, -254066]\) \(69632/9\) \(7847727121125\) \([]\) \(68544\) \(1.2029\) \(\Gamma_0(N)\)-optimal