Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-72400x-3498125\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-72400xz^2-3498125z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-93831075x-161801057250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-8249/100, 1427371/1000)$ | $9.0914332200570531026221786635$ | $\infty$ |
$(-50, 25)$ | $0$ | $2$ |
$(290, -145)$ | $0$ | $2$ |
Integral points
\( \left(-50, 25\right) \), \( \left(290, -145\right) \)
Invariants
Conductor: | $N$ | = | \( 21675 \) | = | $3 \cdot 5^{2} \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $19093194228515625$ | = | $3^{4} \cdot 5^{10} \cdot 17^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{111284641}{50625} \) | = | $3^{-4} \cdot 5^{-4} \cdot 13^{3} \cdot 37^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8190480561623144399815504784$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.40227757208284378744359649715$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0253374473912513$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.525630501353796$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $9.0914332200570531026221786635$ |
|
Real period: | $\Omega$ | ≈ | $0.30383345919541402801523809516$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.5245632085880724149585475491 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.524563209 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.303833 \cdot 9.091433 \cdot 32}{4^2} \\ & \approx 5.524563209\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 122880 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$5$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
$17$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.48.0.44 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 4065 & 16 \\ 4064 & 17 \end{array}\right),\left(\begin{array}{rr} 3639 & 748 \\ 2516 & 681 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 341 & 2176 \\ 3536 & 3537 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 8 & 129 \end{array}\right),\left(\begin{array}{rr} 3839 & 0 \\ 0 & 4079 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 475 & 476 \\ 2108 & 3875 \end{array}\right),\left(\begin{array}{rr} 1361 & 3128 \\ 884 & 273 \end{array}\right)$.
The torsion field $K:=\Q(E[4080])$ is a degree-$57755566080$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4080\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 7225 = 5^{2} \cdot 17^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 7225 = 5^{2} \cdot 17^{2} \) |
$5$ | additive | $18$ | \( 867 = 3 \cdot 17^{2} \) |
$17$ | additive | $146$ | \( 75 = 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 21675.s
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 15.a5, its twist by $85$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{85}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | 2.2.85.1-45.1-c4 |
$2$ | \(\Q(\sqrt{-85}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{85})\) | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{5}, \sqrt{17})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.13363360000.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.277102632960000.14 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.277102632960000.132 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | 16.0.76785869193364478361600000000.20 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.76785869193364478361600000000.4 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | nonsplit | add | ss | ord | ord | add | ord | ss | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | 9 | 1 | - | 1,1 | 1 | 1 | - | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 1 | 0 | - | 0,0 | 0 | 0 | - | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.