Show commands: SageMath
Rank
The elliptic curves in class 216384dt have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 216384dt do not have complex multiplication.Modular form 216384.2.a.dt
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 216384dt
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 216384.ct4 | 216384dt1 | \([0, -1, 0, 14565087, 150674939073]\) | \(11079872671250375/324440155855872\) | \(-10006052181452386448965632\) | \([2]\) | \(44236800\) | \(3.4772\) | \(\Gamma_0(N)\)-optimal |
| 216384.ct2 | 216384dt2 | \([0, -1, 0, -351217953, 2413920920769]\) | \(155355156733986861625/8291568305839392\) | \(255720087778413413507530752\) | \([2]\) | \(88473600\) | \(3.8237\) | |
| 216384.ct3 | 216384dt3 | \([0, -1, 0, -131494113, -4139790691455]\) | \(-8152944444844179625/235342826399858688\) | \(-7258203274115016237911113728\) | \([2]\) | \(132710400\) | \(4.0265\) | |
| 216384.ct1 | 216384dt4 | \([0, -1, 0, -4755714273, -125618979138687]\) | \(385693937170561837203625/2159357734550274048\) | \(66596707529419703313537957888\) | \([2]\) | \(265420800\) | \(4.3730\) |