Properties

Label 216384.dq
Number of curves $4$
Conductor $216384$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 216384.dq have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 216384.dq do not have complex multiplication.

Modular form 216384.2.a.dq

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + q^{9} + 4 q^{11} - 2 q^{13} - 2 q^{15} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 216384.dq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
216384.dq1 216384iq4 \([0, -1, 0, -147457, -18393983]\) \(45989074372/7555707\) \(58256351090638848\) \([2]\) \(1769472\) \(1.9386\)  
216384.dq2 216384iq2 \([0, -1, 0, -41617, 3006865]\) \(4135597648/385641\) \(743346634899456\) \([2, 2]\) \(884736\) \(1.5920\)  
216384.dq3 216384iq1 \([0, -1, 0, -40637, 3166605]\) \(61604313088/621\) \(74813469696\) \([2]\) \(442368\) \(1.2455\) \(\Gamma_0(N)\)-optimal
216384.dq4 216384iq3 \([0, -1, 0, 48543, 14168673]\) \(1640689628/12223143\) \(-94243425537687552\) \([2]\) \(1769472\) \(1.9386\)