Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2+451x+12869\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z+451xz^2+12869z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+36504x+9491040\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1420/9, 53911/27)$ | $4.7929534301728962709313714237$ | $\infty$ |
$(-17, 0)$ | $0$ | $2$ |
Integral points
\( \left(-17, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 21632 \) | = | $2^{7} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-79082438656$ | = | $-1 \cdot 2^{14} \cdot 13^{6} $ |
|
j-invariant: | $j$ | = | \( 128 \) | = | $2^{7}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.77261853330851502334105366093$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.3185278560755228723391275349$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9690225224134634$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.2530301156882295$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.7929534301728962709313714237$ |
|
Real period: | $\Omega$ | ≈ | $0.79161525919863839388328169729$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.5883501439066405352407632581 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.588350144 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.791615 \cdot 4.792953 \cdot 8}{2^2} \\ & \approx 7.588350144\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 18432 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III^{*}$ | additive | 1 | 7 | 14 | 0 |
$13$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 32.48.0.21 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 416 = 2^{5} \cdot 13 \), index $96$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 155 & 0 \\ 26 & 415 \end{array}\right),\left(\begin{array}{rr} 63 & 0 \\ 0 & 415 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 4 & 49 \end{array}\right),\left(\begin{array}{rr} 13 & 6 \\ 106 & 49 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 401 & 16 \\ 400 & 17 \end{array}\right),\left(\begin{array}{rr} 64 & 351 \\ 351 & 64 \end{array}\right)$.
The torsion field $K:=\Q(E[416])$ is a degree-$107347968$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/416\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 169 = 13^{2} \) |
$13$ | additive | $86$ | \( 128 = 2^{7} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 21632m
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 128a1, its twist by $104$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.173056.5 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.119793516544.7 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.119793516544.9 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.261988420681728.6 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | ord | ord | ord | add | ord | ord | ord | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.